38 research outputs found

    The Actin Cortex: A Bridge between Cell Shape and Function

    Get PDF
    The cortical actin network controls many animal cell shape changes by locally modulating cortical tension. Recent work has provided insight into cortex components and regulators. However, how the network is reorganized in response to cellular signaling, and the role reorganization may play during cell state changes, remain to be determined

    Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate

    Get PDF
    Cell fate transitions are frequently accompanied by changes in cell shape and mechanics. However, how cellular mechanics affects the instructive signaling pathways controlling cell fate is poorly understood. To probe the interplay between shape, mechanics, and fate, we use mouse embryonic stem cells (ESCs), which change shape as they undergo early differentiation. We find that shape change is regulated by a b-cateninmediated decrease in RhoA activity and subsequent decrease in the plasma membrane tension. Strikingly, preventing a decrease in membrane tension results in early differentiation defects in ESCs and gastruloids. Decreased membrane tension facilitates the endocytosis of FGF signaling components, which activate ERK signaling and direct the exit from the ESC state. Increasing Rab5a-facilitated endocytosis rescues defective early differentiation. Thus, we show that a mechanically triggered increase in endocytosis regulates early differentiation. Our findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling and therefore cell fate

    Cortical cell stiffness is independent of substrate mechanics

    Get PDF
    Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This β€˜soft substrate effect’ leads to an underestimation of a cell’s elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a β€˜composite cell–substrate model’. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes

    A microfluidic device for characterizing nuclear deformations.

    Get PDF
    Cell nuclei experience and respond to a wide range of forces, both in vivo and in vitro. In order to characterize the nuclear response to physical stress, we developed a microfluidic chip and used it to apply mechanical stress to live cells and measure their nuclear deformability. The device design is optimized for the detection of both nucleus and cytoplasm, which can then be conveniently quantified using a custom-written Matlab program. We measured nuclear sizes and strains of embryonic stem cells, for which we observed negative Poisson ratios in the nuclei. In addition, we were able to detect changes in the nuclear response after treatment with actin depolymerizing and chromatin decondensing agents. Finally, we showed that the device can be used for biologically relevant high-resolution confocal imaging of cells under compression. Thus, the device presented here allows for accurate physical phenotyping at high throughput and has the potential to be applied to a range of cell types

    Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization

    Get PDF
    This work was supported in part by a Marie Curie CIG grant (PCIG14-GA-2013-631011 CSKFingerprints) and a BBSRC grant (BB/P006108/1). MCK is supported by a PhD studentship from the Life Sciences Initiative at QMUL

    Stain-Free Quantification of Chromosomes in Live Cells Using Regularized Tomographic Phase Microscopy

    Get PDF
    Refractive index imaging is a label-free technique that enables long-term monitoring of the internal structures and molecular composition in living cells with minimal perturbation. Existing tomographic methods for the refractive index imaging lack 3-D resolution and result in artifacts that prevent accurate refractive index quantification. To overcome these limitations without compromising the capability to observe a sample in its most native condition, we have developed a regularized tomographic phase microscope (RTPM) enabling accurate refractive index imaging of organelles inside intact cells. With the enhanced accuracy, we quantify the mass of chromosomes in intact living cells, and differentiate two human colon cancer lines, HT-29 and T84 cells, solely based on the non-aqueous (dry) mass of chromosomes. In addition, we demonstrate chromosomal imaging using a dual-wavelength RTPM, which shows its potential to determine the molecular composition of cellular organelles in live cells.National Institute of Biomedical Imaging and Bioengineering (U.S.) (9P41EB015871-26A1

    Simultaneous Analysis of Multiple Mycobacterium tuberculosis Knockdown Mutants In Vitro and In Vivo

    Get PDF
    Mycobacterium tuberculosis (Mtb) represents one of the most persistent bacterial threats to human health and new drugs are needed to limit its impact. Conditional knockdown mutants can help validate new drug targets, but the analysis of individual mutants is laborious and time consuming. Here, we describe quantitative DNA tags (qTags) and their use to simultaneously analyze conditional Mtb knockdown mutants that allowed silencing the glyoxylate and methylcitrate cycles (via depletion of isocitrate lyase, ICL), the serine protease Rv3671c, and the core subunits of the mycobacterial proteasome, PrcB and PrcA. The impact of gene silencing in multi-strain cultures was determined by measuring the relative abundance of mutant-specific qTags with real-time PCR. This achieved accurate quantification over a broad range of qTag abundances and depletion of ICL, Rv3671c, or PrcBA resulted in the expected impairment of growth of Mtb with butyrate as the primary carbon source, survival during oxidative stress, acid stress and starvation. The impact of depleting ICL, Rv3671c, or PrcBA in multi-strain mouse infections was analyzed with two approaches. We first measured the relative abundance of mutant-specific qTags in total chromosomal DNA isolated from bacteria that were recovered from infected lungs on agar plates. We then developed a two-step amplification procedure, which allowed us to measure the abundances of individual mutants directly in infected lung tissue. Both strategies confirmed that inactivation of Rv3671c and PrcBA severely reduced persistence of Mtb in mice. The multi-strain infections furthermore suggested that silencing ICL not only prevented growth of Mtb during acute infections but also prevented survival of Mtb during chronic infections. Analyses of the ICL knockdown mutant in single-strain infections confirmed this and demonstrated that silencing of ICL during chronic infections impaired persistence of Mtb to the extent that the pathogen was cleared from the lungs of most mice

    Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3Β mmβˆ’1 to 1.3 ± 0.6Β mmβˆ’1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7Β mmβˆ’1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment

    Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma - a systematic review

    Get PDF
    corecore